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Abstract  

Preparatory to a possible in-depth study of dynamical symmetries in quantal systems, 
this paper establishes the fundamental aspects of group representations in complete 
orthocomplemented weakly modular lattices (CROC's). Several related results, pertaining 
to the structure, direct sum decomposition, and invariance of CROC's, are also found. 

1. Introduction 

During the last decade considerable effort has been directed toward the 
abstract description of  both quantal and classical systems in terms of  suitable 
lattices o f  propositions. This approach has been originally suggested by the 
early work of  Birkhoff and yon Neumann (1936). A systematic review of  the 
field can be found in Jauch (1968) (see also Varadarajan, 1968). The funda- 
mental theorems are summarized in Piron's work (1964). A more recent 
survey, including newer developments, was given by Piron (1972a). 

A particular attractive feature of  this approach is that it may provide us 
with a deep insight into the origin and nature of  dynamical symmetries. Pro- 
gress in this direction was recently made by Piron (t 972b; also Piron, 1972a), 
who motivated the emergence of  the Galilei group and discussed its relation 
to gauge invariance (in this respect, see also Jauch, t 964). 

It is well known that, in the customary framework of  quantum theory, the 
derivation and application of  symmetry principles is rendered possible by the 
fact that there exists a well developed theory of  group representations in 
Hilbert spaces. On the other hand, no representation theory of  groups in 
lattices corresponding to quantal proposition systems is known. We believe 
that significant progress in the understanding of  the origin, motivation, and 
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dynamical role of symmetries can be achieved only when such a represen- 
tation theory is available. 

The purpose of this paper is to study the foundations of a theory of group 
representations in complete, orthocompleted, weakly modular lattices. Apart 
from establishing the basic representation theorems, we also obtain some 
additional insight into certain properties (like invafiance, decomposability) of 
the relevant lattices. 

We do not consider here the specific problems associated with continuous 
representations of Lie groups. This study would necessitate the introduction 
of suitable topologies. This problem will be considered at a later time. 

2. General Preparations 

We begin by quoting, for the reader's convenience, three well-known 
definitions (cf. Piron, 1964; Loomis, 1955; and Maeda, 1955). 

Definition 1 (CROC). Let ~ be a set equipped with a partial order relation 
<. Suppose that any arbitrary family (xi} of elements possesses an infimum 

1 

Suppose further that there is defined an orthocomplementation** x ~+ x'  on X'. 
Finally suppose that ~f' is weakly modular.t Then ~a will be called a complete 
orthocomplemented weakly modular lattice, or CROC:~ for short. 

Remarks. (a) Completeness§ guarantees the existence of a first element, 
to be denoted by O. (b) Completeness and orthocomplementation guarantee 
the existence of a supremum 

Vx, 
1 

for arbitrary families. Then the existence of a last element I follows, and we 
also have xVx'  = L 

Definition 2 (Direct Union). Let (~qa} be an arbitrary family of CROC's. 
Consider the set £ao f  all families (xa}, x~ E ~ga, all a. Define the order 
relation 

{x~} < {y~} iffx~ < y ~  

for all a, and the complementation 

{x~}' = {x~')  

* *An orthocomplementat ion is a decreasing involution x ~* x'  of order 2, so that x" = x ,  
xAx'  = O, x < y ~*y' < x'. 
This means that i fx  < y  then {x, x ' , y , y ' }  generates a Boolean lattice. Equivalently, 
x < y implies x V ( x ' A y )  = y .  

$ CROC is an acronym for "'Canoniquement relativement ortho-complement&" 
§ I.e., the unrestricted existence of infima. 
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Then 5¢ is a CROC, called the direct union of  the 5Ca's, and we write 

S = v S ~  C~ 

Definition 3 (Comparability). Two elements of  a CROC are said to be com- 
patible (in symbols: x ~+y) if any one of  the following equivalent conditions** 
is satisfied: 

i. (xAy')Vy > x or, dualy ,  (xVy ' )A y < x 
ii. Any possible (nontrivial) distributivity relation between x, y,  x' ,  

y '  holds true 
iii. (xAy)V(xay ' )V(x 'Ay)V(x 'Ay ' )  = 1 

Remarks. (a) It follows that x ~ y  i f fx  +~y'. (b) A lattice is weakly modular 
i ff x < y implies x ~+ y.  

We now introduce and study a crucial new concept, to be called star map.** 

Definition 4 (Star map). Let 5 f  be a CROC, and let J r '  be a subset o f f  
which is a complete lattice with respect to the operations A, V of  =L~ a. The 
star map*: dt ' -~ ~qa is defined by 

x ~ x *  = ( x ' V a ) A b  

where a(b) is the first (last) element of  ~ ' .  

Lemma 1. Let J t ' C  oo9? be as specified in Def. 4 and assume that dr ' i s  
closed under the star map. Then * is an orthocomplementation on ,,/t'. 

proof. 

0¢, 

(x*)* : [(aVx')Ab]* : {[(aVx')Ab] 'Va}Ab 

: [ (a 'Ax)Vb'Va]  Ab = ( x V b ' ) a b  : x 

13. Let x, y E J r ' so  that 

y* = (y'Va)Ab, x* = (x'Va)Ab 

Since x < y  i f f y '  < x ' ,  we see that, by isotonity, x < y  implies 
y*  < x * .  Conversely, since x* < y *  =~ (y*)* < (x*)*, we have by (a) 
that x* < y *  implies y < x .  

7. 

xAx* = x AbA(aVx')  = xA(aVx' ) = (xAa)V(xAx')  = a 

wbere we used the fact that x ~ a +~ x '  and took notice of  Remark (b) 
following Def. 3, which then permits distributivity. 

** Cf. Piron (1964) p. 454. 
"~ Such a map, but restricted to segments only, has been studied already by Piton (1964). 
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Lemrlm 2. Let ~ t 'C  ~ be as specified in Def. 4 and assume that ..l/is closed 
under the star map. Then Jr ' is  a CROC with the operations A, V, * 

Proof. It suffices to show weak modularity (cf.~- footnote, p. 74). I f x  < y ,  
then by the remarks following Def. 3 we can use compatibility and hence 
distributivity to calculate 

x V ( x * a y )  = x V  { [(x 'Va)ab ] 'Ay } = x V  [(x'Va)A y] 

= x V  [(x 'ay)V(aAy)]  = x V ( x ' a y )  = y 

where in the last step, weak modularity of  ~ga was used. 
In view of this lemma, we are led to the foUowing: 

Definition 5. (Subcroc). If  ( ~¢a A, V , ' )  is a CROC and a g  is a subset of ~q' 
which is a complete lattice relative to A, and V, and if J / i s  dosed under the 
star map, then we call (,.//, A, V, *) a subcroc of .ga * *  

As an extension of Piron's Theorem X1 (Piron, 1964), we now establish the 
following: 

Lemma 3. L e t . l / b e  a subcroc of ~a .  Then x ~ y  in J / i f f x  --*y in ~q'. 

Proof. Trivially, for x,  y E d[ ,  we have a < x, y < b and x ~+ a ~ y, so that 
we can write 

x V ( x * A  y)  = xV [(aVx')A bAy] = x V  [ (yAa)V(yAx ' ) ]  = x V ( x ' A  y)  

from which our statement fotlows via (i) of Def. 3. 
We conciude this section by studying intersections of  subcrocs. 

Lemma 4. The set theoretic intersection of two subcrocs is a subcroc. 

Proof: l f J t '  1 andag  2 are subcrocs of ~ ,  the ~//1 N ag2 is a complete 
sublattice o f ~ .  Denoting the first (last) element o f a g  I c~ J [ 2  by a(b) 
respectively, we have 

x* - (x 'Va)Ab = (x 'Ab)Va (2.1) 

(The second equality follows from the fact that, since a < x  < b, the elements 
x, a, b, x '  are pairwise compatible, so that distributivity can be invoked, and 
furthermore aAb = a.) Denoting the first (last) elements of  J / k  (k = 1, 2) by 
ak(bk) and the corresponding star maps by "1 ( ' 2 )  respectively, from (2.1) 
we get (since al < a < b  < b t )  

x* = (x 'AbAb~)Va = [(x'ab~)Ab] Va = [(x'ab~)Va] a b  
(2.2) 

= [(x 'Abl )ValVa]  A b  = ( x * l V a ) A b  E ..111 

A similar reasoning gives 

x* = (x*2Va)Ab ~..II2 (2.3) 

From (2.2) and (2.3) we get x* E .-~'1 fq Jr '2,  QED. 

** Subcrocs that are arbitrary singleton subsets will be disregarded in the following. 



GROUP REPRESENTATIONS IN CERTAIN LATTICES OF PROPOSITIONS 77 

3. Morphisms, Invariance, and Decompositions 

We now turn our attention to questions relating to mappings between 
CROC's and associated structural properties. In a sense, these topics run paral- 
lel to similar questions retevant for Hilbert spaces and prepare the ground for 
the representation theory of  groups. Some results of  this section will not be 
needed in the sequel, but they are interesting per se. 

To facilitate the discussion, we employ the standard definition of ortho- 
gonality of  CROC elements: x / y  i f fx  < y ' .  

Following Piton (1971), we adopt the following specification of  morphisms: 

Definition 6 (Morphism). A morphism between two CROC's o~al and f 2  is 
a map 

¢ : SeI -+ Le2, x ~  

with the following properties: 

i. ~Vx s = V~x s /  

ii. x l y ~ ()x J_ q)y 

In particular, if ~b is bijective, we speak of  an isomorphism of  CROC's and write 
=ogf 1 ~ ~c~° 2. I f  ~L,~ 1 -- •2 --- ~ and q$ is bijective, we call it an automorphism 
of~q °. 

Remarks. (a) It can be shown that a morphism has the following additional 
properties: 

~O 1 = 0 2 ,  ~Axj = A~x], ~bx' = (~bx)'A~bt 1 
I 1 

However, q$I1 4=/2, unless ~ is an isomorphism. In that case, the third property 
simplifies to ~x' = (~x)'. Also note that, rather trivially, x < y  implies 4~x < ~y 
for any morphism (and ~b is strictly monotone  for isomorphism@ 

(b) Let P be the set of  all automorphisms of  a CROC £e, equipped with the 
binary operation of  composition of  morphisms. In the familiar elementary man- 
ner it then follows that 14 is a group, which will be called the group ofauto- 
morphisms of  f .  

Next we introduce the concept of  invariance in an obvious manner: 

Definition 7 (Invarianee). Let ~ '  be a subcroc of S and let ~ be a morphism 
of ~q~'. We say that ~ is invariant under q$ iff m E J r '  implies ~m E Jr ' .  

We can now establish the following: 

Lemma 5. Let ~ be invariant under ~ and suppose 45 is actually an automorphism 
of  =,ce. Then its restriction q$/// : .A[( - ~ '  given by ~jl/x = ~bx is an automorphism 
of.C/. 

Proof The only nontrivial fact that must be shown is that x < y *  implies 
qSJ/t x < (¢~jg y)*.  But x < y *  means x < bA(y'Va), so that  Cj/ex = ~x < 

~bA(~y'Vg~a), hence 0 ~ / x  < bA [(qSy)'Va] = (qSy)*, QED. 
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In the following two lemmas we want to study' CROC's that are direct 
unions of  subcrocs. So as to avoid confusion with later developments we agree 
to say that f i s  c-irreducible iff  its center** ~consis ts  of  O and I only. In the 
opposite case we shall say that S is c-reducible. 

Lemma 6. A CROC is c-reducible iff it is isomorphic to the direct union of  
some of its subcrocs. 

Proof. (a) Assume that f is c-reducible, i.e., that there exists some z E 
such that z ~ O, z =/:I. Definer 

"~11 = { z A x  ~ X  1 iX E ~ }  = [0,  Z] 

J l  2 = { z ' A x - x 2 [ x  < ~ o }  = [0, z ']  

J /1  and J1'2 are obviously subcrocs of  -g *a. Furthermore, for any x E ~ ,  
x = X 1Vx 2" Finally x < y implies x i < Yi (i = 1, 2), so that indeed .ga ~. j r ,  1Vdt,2. 

(b) Assume 5 g ~  V~jga ,  where each ~g/ce is a subcroc. Consider the family 

[bce 

xj = lace 

2c~ = {x]), where 

i f j  = 

i f ]  v e a 

I f  now {yce}is an arbitrary element of  Vao,/t'ce, we trivially have 

({yce}'A2ce)V.{yce} > 2ce 

hence 2ce is in the center of  V~jt'ce, hence ~7 is c-reducible. 

Lemma 7. Let 54' ~ Ve~'t'ce where each J/ce is a subcroe of  £a. Assume that 
for any pair ~ v e/3 we have ~//t'ce / Jr't> by which we mean that xce < x} for any 

:/:/3. Assume further that either 
i. At least one J / ~  is not isomorphic to a segment of  .ga; or 

ii. the last elements of  the subcrocs J / ~  are such that Vceb~ v e I with 
each bce being in the center of  ,go. Under these assumptions, S i s  
infinite. 

Proof Since a set is infinite if it is isomorphic to one of its proper subsets, 
it will suffice to show that, under the conditions stated ~ is isomorphic to 
one of its subcrocs. To this end, we define the map 

f :  V J / ~  -+£Z 
ce 

given by 

f({xce}) = Vxce 

** The  cen te r  o f  a C R O C  is the  subse t  of  e l e m e n t s  t h a t  are c o m p a t i b l e  w i t h  all  e l e m e n t s  
of  .~e. 
A segmen t  [n, m] of  .~  is the  set  o f  al l  e l e m e n t s  x such t h a t  n < x < m. 
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(a) f i s  injective. To see this, note first that, since ,At'c~ ± ,.Z/~, we have 
J G  ~ Jr'C, hence 

beA(Vx~) = x~ 

so that 

y~A(Vxo~) = x~Ay¢ 

for any Yt~. Now assume that 

i.e., 

f({x~)) =f({y~}) 

F O~ = V~o~ O~ 

Combining this with our preceding observation, we obtain 

Y3 = y~A(~yc~) = y~A(Vx~) = xcAy~ 

that is, y3 < x3. On the other hand, 

x~ = x3A(Vx~) = x~a(Vya)  = x~Ay~ 

so that x 3 < y 3 .  Thus, x~ = y~, hence {x~} = {y~}. 
( b ) / i s  monotone. Indeed, {x~} < {y~} trivially implies V~x~ < V j ~ .  
(c) The image o f f ,  to be denoted in the sequel by ~f+, is a subcroc of  ~qo. 

To see this, note first that, since f i s  strictly monotone and V~Jt'~ is a lattice, 
f +  is also a lattice with first and last element V~ae and V~b~, respectively. 
If now x ~ c f + ,  we have 

x* -= [x'V(Vac~)] A(Vb~) = [(Ax~)V(ya~,)] A(Vb~) = [A(x'Vac0] A(Vb3) 

t 
= [ V ( x ~ ) w ~ ]  ---Vx *'~ ~ f +  

which was to be shown. 
We now know that, by construction, the map 

f :  v~,~ --,Xe ÷ 

is bijective and monotone. We further observe that 

i . , w  VVxo k = 

and 

ii. If  {xc~} ± {y~}, then V~x~ < Vay *a, which means that f ({xa})  J_ 
[f((Yc~})] *. 
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In summary we see that the map f o n t o f  + is an isomorphism. Now, by the 
basic assumption of the lemma, we also have a CROC isomorphism ¢: f - +  V a J / a  
so that 

b ¢: ~ - > f +  

is an isomorphism. Suppose we have ~a+ _~ c~, and let x E ~C~a Then x = V=xa 
and xa  = xAb~, so that ~¢~ = [0, ha] for each a. We trivially also get that 
I = V~b~. 

Conversely, assume that dr '  a = [0, b~] for each a and that Vaba = 1, where 
each b~ is in the center of  ~a. Then, since J / a  ± ~¢~, we see that for any x E ~a, 
xAba = xa, and also V~x~ = Va(xAb~) = (xAVab~) = x. From these observations 
follows that the map q~ canbe characterized as follows: q~x = {b~Ax} = {xo~}. 
Thus, f =  ~-1, so that =LP- 2~ +. 

In summary, we see that ~ - - - f+  iff both J / ~  = [0, ba] for each a, and 
Vaba = L Therefore, if at least one of the conditions (i) and 0i) of the lemma 
is not satisfied, then car + is a proper subcroc of 5e. This concludes the proof. 

We may supplement the preceding lemma by showing how, under a suitable 
additional condition, ~ +  can be actually constructed. But first we need the 
following: 

Definition 8 (Generated Subcroc). Let S be an arbitrary subset of f .  
Consider all subcrocs ~ of f which contain S. Then f3U¢~ i =- J g ( S )  is a 
subcroc** and will be called the subcroc generated by S. 

Now we have 

Lemma 8. If the conditions of Lemma 7 hold and if in addition as = O for 
all a, then~,f*=Jt(S),  where S = U cc~¢o~. 

Proof Obviously S C ~  + . By definition,Jt '(S) = O/.df], SC J t ' j  for all], 
so that f +  is one of the .~///. On the other hand, i fx  E ~ + ,  then x = Vax~ 
so that x E ~ for all/. Therefore f +  C ~ for all/. T h u s , f  + = n ] J / j ,  QED. 

The purpose of the next 1emma is merely to present a weaker criterion for 
the decomposition of a CROC into c-irreducible parts than the one which was 
given by Piron (1964). We have the following: 

Lemma 9. A CROC is a direct union of orthogonal segments f a  = [0, ba] 
such that x = Vaxa and x~ = ba Ax iff the center of ~ is a Boolean atomic 
CROC obeying the covering lawt whose atoms ba are disjoint, i.e., ba ± b& 

We relegate the rather technical proof to Appendix A. 
Next we introduce a concept which is crucial for the representation theory. 

Definition 9 (Direct Sum). Let ~,e be a CROC and let (~ '~} be a class of  
subcrocs. Let 

** This  follows f rom the generalization o f  L e m m a  4. 
For  the  defini t ions o f  atornicity and the  covering law, cL Piron (1964). 
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be an isomorphism. Let t : 5 f  ~ ~ be an automorphism which leaves all J t '~  
invariant, i.e., tdt'~ = Mt'~ for each c~. Let ta denote the restriction of  t to Jt '~.  
Define the map** 

given by 

Suppose that for each t and each {t~} we have the "commuta t ion  law" 

If  such a map ~ exists, then we say that ~a is the direct sum of  the subcrocs 
j t ~  and we write S = @ a  J t a .  

Since the commutat ion law is clearly a very serious restriction on ~b, it is 
worthwhile to demonstrate on an explicit example that a nontrivial ~b can be 
found. This will be done in Appendix B. 

4. Theorems on Representations 

We start with the following natural definition: 

Definition 10 (Representation). Let G be an abstract group with elements 
g. L e t R  be a subgroup of  the group 17 of  automorphisms o f a  CROC ,LP. I f A  : 
G ~ R is a (surjective) homomorphism,  then we shall say that A is a represent- 
ation of  G in o~ °, and write (G, A, ~ )  or simply (A, ~ ) .  I f  A is an isomorphism, 
the representation is said to be faithful. 

Equally natural is the following: 

Definition 11 (Decomposability). Let ~ be a CROC and J (  a nontrivialt  
subcroc which is invariant under all elements r of  a subgroup R of  the group 
of  automorphisms P of  .L~ °. Then we say that  R is a reducible system of auto- 
morphisms of  ~W. Otherwise R is irreducible. Suppose that S =  O~ JCa, where 
each J ~  is invariant under R. Then we say that R is decomposable. I f R  is 
decomposable and each Jt'c~ is R-irreducible, then R is said to be fully 
decomposable. 

Obviously, a (G, A,~a)  will be called reducible (irreducible) depending on 
whether R (corresponding to A) is such. Decomposability of  a representation 
is defined accordingly. 

We now state 

Theorem 4.1 (Schur's Lemma). Let G be a set o f  transformations and let "~1 
and ~qP2 be two CROC's. Suppose that to each g E G there is associated an 

** The map {t~} is obviously an automorphism of Vc~.////co 
"~ That is, d/4:- {0, I }. 
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automorphism A(g) of  5 1  and an automorphism B(g) of  f 2 .  If  there exists 
a morphism T : 5 1  ~ 5 2  with the property that 
TA(g)x = B(g)Tx for all x E ~a 1 and every g E G, then** 

i. Ker T is an invariant subcroc of  5 1 ,  
ii. Im Tis an invariant subcroc of  5(' 2 . 

Proof (i) We first show that Ker T is a segment of  5('1. Obviously, 
0 1 E  Ker T. Define b = Vx E 5 1 ,  where the supremum V is taken over all 
elements of  Ker 7". Clearly, Tb = 02. Take now any x E 5 1  such that x < b. 
Then Tx < Tb = Oz, hence x E Ker T. Thus, Ker T = [01, b] as claimed. Since 
any segment is a subcroc, Ker T is a subcroc. To show that it is invariant under 
A(g), let x E Ker T, and then TA(g)x = B(g)Tx = B(g)02 = 02.  Thus A(g)x E 
Ker T for all g E G, QED. 

(ii) Since, from the basic properties of  a morphism, it easily follows that the 
image of  a CROC is always a subcroc, we only need to show the invariance of  
Im T under B(g). I f y  -~ Tx E I m  T, then B(g)y = B(g)Tx = TA(g)x E I m  7", 
QED. 

Before formulating the next, closely related theorem, it will be useful to 
introduce the following definition: 

Definition 12 (Linearity). An automorphism T of  a CROC 5(' is said to be 
linear if it has a fixed point, i.e., if there exists an x o E f ( X o  ~ 0, I )  such 
that Txo = Xo. Correspondingly, a representation (G, A,  f )  of  a group will be 
called a linear representation if all A(g) are linear automorphisms of  S .  

This terminology is motivated by comparison with (compact) linear opera- 
tors on Hilbert spaces which always have an eigenray, Tx o = Xx o. Some basic 
properties of  linear automorphisms will be given in Appendix C. 

We now state 

Theorem 4.2. Let A(g) be an irreducible system of  automorphisms of  ~ .  
Then the only linear automorphism T which commutes with all A(g) is the 
trivial automorphism. 

Proof. If  Tx o = Xo and rA(g)  = A(g)T, then TA(g)Xo = A(g)Xo. Since the 
set of  all fixed points of  T is easily seen to be a subcroc, we observe that 
in fact it is now invariant under A(g). Therefore, it is either the subcroc (0 ,  I} 
or ~ itself. But since we have at least one x o ¢ O, I ,  the set of  all fixed points 
o f T i s  ~°itself, i.e., T = 1 Le- 

An elementary consequence is 

Theorem 4.3. If  G is an Abelian group, then all its irreducible linear repre- 
sentations (G, A, 5 )  are one dimensionalt. 

** In an obvious way we define 

K e r T  = { x l x E , L  a l a n d T x = 0 2 } ,  

Im T = {y I Y ~ ~ 2  and y = Tx for some x ~ L e 1}- 

~ The dimension of  a lattice is customarily defined as the supremum of the length of all 
segments that it contains. 
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Proof. Under the stated condition, for every given A(g) one has A(g)A(h) = 
A(h)A(g) for any h; therefore, by Theorem 4.2, A(h) is the trivial automorphism 
1 .~, for all h E G. Assuming that the CROC f is nontrivial (i.e., it has more 
than two elements), it will contain a subcroc {O, x)wi th  x :/: I, which is invari- 
ant under t~e, contradicting the irreducibility of the representation. 

The next theorem provides a criterion for reducibility of representations. 

Theorem 4.4. Let f be a e-reducible CROC (with more than four elements) 
and suppose that it carries a representation A of a group G. Then A is reducible. 

Proof. Our strategy will be to show that the center <~ of f is a subcroc 
invafiant under A. Because of e-reducibility, there exists some z E 9f such that 
z 4: O, z 4:/. By de finition o f c@, we also have z' E c@ (and o f course O, I E ~ ) .  
C~is obviously a poset and in fact a complete sublattice, since, quite generally, 

/ 

YI +~ x implies I yyj  

X 

/ 

l, A y  i ~+ x 
1 

Furthermore, z* = z 'AI = z' E c6. Thus, ~ i s  actually a subcroc. If now z E q~, 
then for any y ~ ~Lf, 

(zAy')Vy > z 

so that [cf. Remark (a) following Def. 6] 

{[A(g)z] A[A(g)y] ')V[A(g)y] > A(g)z 

i.e., A (g)z ~ A(g)y. Since A(g) is bijective and y was arbitrary, it follows that 
A(g)z C c~, hence the subcroc Cgis invariant under A, QED. 

Our next theorem permits the construction ofA-invariant subcrocs from 
A-invariant subsets. 

Theorem 4.5. Let S C 5~ be a subset invafiant under a system A of auto- 
morphisms. Then the generated subcroc 54(S) is invariant under A. 

Proof Because of Def. 8, S c d{  S for each j, where r3j~g/= Jg(S) .  There- 
fore, A(g)S C A(g)jlj ,  so that, by the assumption of the theorem, 

S C A (g)j/t' S (4.1) 

Since A(g) is an automorphism, A(g)~g/is a subcroc, and furthermore 

A(g).g] ~ A(g).sg i , i f j  =/=]' 

Consider now the map 
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~ i  ~ A (g)~] 

This is certainly surjective, and, by the preceding remark, it is also injective. 
Consequently [from (4.1)], 

{ogt)} = {A(g)Mlj} (4.2) 

because by definition { ~ }  is the maximal family that contains S. 
If now x E ~ ' ( S )  = r3]j//, then x E.Xt' i for all j, and so, by (4.2), A(g)x E 

A(g)M(]. Hence A(g)x E N/A(g)..¢l l = ~]..gl] =..¢g(S), so that J / ( S ) i s  invariant 
under A, QED. 

Our final theorem concerns the uniqueness of the decomposition of a 
representation. To facilitate the discussion, we first define the concept of 
equivalence: 

Definition 13 (Equivalence). Let ~gq a and 2g2 be two CROC's. Let ~ i (~2)  
be an automorphism of ~°1(5~2). Suppose there exists a morphism T: ~°1 -+ 
~oq~2 such that 

TOlx  = ~2Tx 

for all x E 5e 1. Then we say that ~ I and qJ2 are similar. If, in particular, T is 
an isomorphism, we say that ~ 1 and 02 are equivalent automorphisms. Let now 
{0 a s} and {~2 s} be two systems of automorphisms of ~° 1 and ~°2, respectively. 
If, for each s, ¢ i s is similar (equivalent) to ~2 s, we will say that the two systems 
of automorphisms are similar (equivalent). In case of equivalence we shall write 
(¢1 s, ~¢~1)~(~2 s, ~Q~02). 

We can now state 

Theorem 4.6. Let (A, f )  be a representation of a group G in ~q. Assume 
that A is fully decomposable, i.e., ~ = @~ ,.~'~ where each Jt'a is invariant 
under A and is an A-irreducible subcroc of ~ .  Then the decomposition 
~q~o= ( ~  is unique except for order and equivalence. 

Proof  Let ~ = G ~ ' a .  From the commutation law in Def. 9 we have for 
each A (g) 

¢A(g) = {Aa(g)}~ 

i.e., we have the equivalence 

( A , ~ )  ~ ({As}, @ J r = )  

Let now )2t~ be defined as follows: 
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where 

= Ix0` if a = 13 

Ya 
( aa if ¢¢ 4~t~ 

Consider the subcroc ~¢~ C Va..tg0` which is formed by all 20, for any fixed 
but arbitrary c~. Then ogt'a is a segment in Va.g/e. Therefore q~-1~¢ is a 
segment in ~gf. It is also easily seen that any x E 'Se can be expressed as an 
orthogonal union, i.e., 

X = Vx0`  
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where 

x0  ̀E ~-1 ~0` and x~ < x~ (a v~ fl) 

Furthermore, because of the equivalence stated at the beginning of the proof, 
one sees that each segment ¢-1 ~ft'0  ̀is irreducible under A in ~a. 
Now suppose that 

~q~=@,./t' a ( a E K )  and 2T=@sV" x (XCL) 

where Jg0` and X x are A-irreducible subcrocs. Then, for any arbitrary 
nx E q~?,~ jl/'x, 

t /h  = VnK0` 

where 

For a fixed c~, the set {n;~ a } forms a subcroc in ~ , . . ~ a ,  which is invariant 
under A, because ~ j V "  x is such. But this contradicts the assumed A- 
irreducibility of q~,~g~0`, unless that subcroc is {0}, {0, ba}, or q~/C},.dd0̀  itself. 

Furthermore, since ¢-2 Je~x is an A-irreducible.segment, only one compo- 
nent is different from 0, which we shall call q~,-//0`. Clearly, we have the 
identity isomorphism 

q}-I A 

with some a E K, and some X E L. Therefore, ~b-I~a is equivalent to ~ y  ~7" a. 
However, the mapping 

~ ' a  -+r ig  

given by 

2~ ~ x~ 

reveals that M(a is equivalent to ~0`. Since the dt'~ and the Y x  play a dual 
role, the theorem now follows trivially. 
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Remark. The theorem still holds true if, instead of  invariance under the 
group A, we demand only decomposition into t-irreducible and t-invariant 
subcrocs, where t is an arbitrary given automorphism. 

In summary, we see that our representation theorems correspond closely 
to those pertinent for representations in Hilbert spaces. 

Note Added in Manuscript. After this work has been completed we became 
aware of  a paper by Gudder (1971) and one by Gallone and Mania (1971), 
which treat closely related questions. 

Appendix A: Proof o f  Lemma 9 

(a) Assume that cp  is ~-isomorphic to Ve ~q~e, where ~q~e = [0, be ] ,  
Vaxe -- V~(be Ax) = x, .oq'~ J_ ~q~. Repeating the argument presented toward 
the end of  the proof  of  Lemma 7, we see that ~x = {xA be} If we define the 
family be = {x]} where 

i f ]  ~ 

then we now see that q~ba = be. Since/~e is in the center of  Ve ~q°e we have ba 
in the center of  ~o. Let now z E cg(5~), so that q~z = {za} E (V~ f ~ ) .  There- 
fore, z~ ~ cd(~°e). But, since each ~ e  is c-irreducible, we have that either 
ze = O, or za = be. Consequently, z = Vxbx.with X E L  where the index set L 
is a subset of  the index set A from which the a are taken. Hence, in cg(~o), each 
be covers O,i.e., it is an atom (see Piton, 1964). Furthermore, since every 
z ~ c~(cg) is some supremum of  eIements ha, these are the only atoms in cg(cp). 
Hence c g ( ~ )  is atomic with atoms bc~, and be ±b~ (if~ 4:a) .  All that is left to 
show is that the covering law is obeyed in cC(cS). Suppose that for some 
o EA,there  exists x , y  E c ~ ( f )  such that 

Then we have 

x < y  < x V b e  

x = V bs, y = V yp 
6 E D  p ~ R  

where R C A, D C A. Further, since x < y ,  we have D C R. In addition, because 
of  the assumptiony < x V b o ,  we have R C D U {o}. Therefore, 

D U {a} CR  U {o} C D  U {o} 

i.e., R U {a} = D U {a}. Thus, either we have R = D U {o} or R = D and corre- 
spondingly either y = xVbo o r y  = x. Thus, the covering law holds, which 
concludes the proof  of  the first part of  the lemma. 
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(b) Assume that cg(-Se) is a Boolean atomic CROC obeying the covering law 
and such that its atoms ba(a  C A )  are disjoint, i.e., b~ I bt3 for a 4 = ~. As shown 
in Piron (1964), we have I = Vaba.  Therefore, for any x E 5e, 

V ( x a b ~ )  = Vx~ = [xA(Vb~)l = x (A1) 

Also, 

t 
xc~ = x'Vb'~ > b~ > b~Ax = x~ (A2) 

for all a 4:/3. Consider now the segments ~fa  - [0, b~] .  From (A2) we see 
that 5¢c~ 3_ ~ o  Then we note that, because of  (A1) and (A2), the map 

given by 

: f - - '  V 2 ' ~  
Oz 

0x = (x~} 

is trivially an isolnorphism. 
Suppose now that z~ E q ¢ ( f a )  but z~ 4= O, z a 4 = bc~, i.e., assmne that ~q~a 

is c-reducible. Then 

(zc~Ax*a)Vx~ > za 

However, x *a : x~Aba : (x 'Vb~)Aba = x 'Ab~,  so that, by  (A3), 

(A3) 

(z~Ax*~)Vx~ = (ze Ax'Ab,~)V(b~Ax) : (z~Ax')V(b~Ax) ;> z~ 

But, since x > xAbc~, we get (zc~Ax')Vx > (zc~Ax')V(bc~Ax) > Zc~. This means 
that za ~ x for any x,  hence z~ E ~ (cp). But then one could write z~ = V~b~ 
which contradicts the assumption regarding z~. Consequently, each 5Ca must 
be c-irreducible, and this concludes the proof.  

Appendix B: Example o f  a Direct Sum Decomposition 

Let A t '  be the non-Boolean CROC specified by the order diagram of  
Figure 1. Define 

Jd  t = ( O , a , b , c , d , a ' , b ' , c ' , d ' , I )  

This is trivially a subcroc of ~ .  
Define 

~ ' 2  = { o , f }  = [ o , f ]  
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Figure 1-A non-Boolean CROC. 

iI 1 

e 

Consider now the map of ~ : ~ ~ I V J t ' 2  given by the following assignments: 

~x 

¢x 

X 

0 a b c d e f 

(o,o) (~,o) (b,o) (c,o) (d,O) (a',O) (O,f) 

g h i a '  b' c' 

b ~  t (d', 0) (c', 0) (b', 0) (a',f) ( , f )  (c,f) 

X 

~x 

d' e l ' f '  g' h' i' 

(d',f) (a,f) q,O) (d,f) (c,.t) (b,f) (Lf) 

By a straightforward but somewhat lengthy calculation it can be checked 
that q~ is an isomorphism and that it obeys the commutation law of Def. 9. 
Hence, we established the direct sum deomposition 

e I 

fl 

Observe that J/1 is not a segment and that J /1 is not orthogonal to ~g2- 
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Appendix C: Some Properties of  Linear Automorphisms 

In the following, T will denote a linear automorphism and fixed points will 
be denoted by xa; arbitrary elements of ~ will be written y, z, etc. The 
abbreviation fp will be used for "fixed point." 

Theorem C1. I fxo  is a fp of T, so isx  o. 

~roof: Tx'o = ( T x o ) '  = ' X 0 . 

Theorem C2. I fx~  (a E A )  are fp's of T, so are all suprema and infima. 

Proof. T(V~xa) = V~Tx~ = Vx, and similarly for An. 

Theorem C3. If  Tis linear, so is T -1 and has the same fp's. 

Proof Txo = Xo implies x o = T-Ixo . 

Theorem C4. I f y  ±x  o then Ty I x  o and conversely. 

Proof. (a) y < x o implies Ty < Tx'o = x'o. 
t ! 

(b) Ty ~ Xo implies Ty < Tx'o and thusy  <Xo.  

Corollary to Theorem C4. The set K = {ye [y~ I Xo} is an invariant subcroc. 

Proof. Invariance under T follows trivially from the theorem. To show that 
K is a subcroc, observe that y~ < x~ (for fi E B) implies A~y~ < x~ and also 
V¢y¢ < x~). Also, 0 EK.  To show closure under the star map, note that for any 

t E t t t ~ t y~ K,y~Ax o < x  o so tha ty~  =y~Axo EK. 

Remark. This corollary holds also for the set K' = {va [va LX'o}. 

Theorem C5. For any fp, Xo ~+y i f fxo +~ Ty. 

P r o o f .  

r 
x o ~+y ~ ' x o A ~ V x o )  < y  

T[xoA(yVx'o)] < Ty ¢" TxoA(TyVTxo) < Ty 
¢ 

xoA(TyVxo) < Ty O Xo ~+ Ty. 

Here we used Def. 3, part (ii), and Theorem C1. 

Corollary to Theorem C5. The set H = {ya lYa ~+xo)is an invariant subcroc. 

Proof Invariance under T is trivial from the theorem. To show that we have 
a subcroc, observe that suprema and infima of families from H are also coro- 

t 
patible with Xo and that 0 E H, I E H, so that y*  = y~. Also, y~ ~+ Xo, hence 
y ~ E H .  

Theorem C6. If T1 T2 = T2T1 and Xo is a f p  of T2, then Tlxo is a fp of T2. 

Proof. From the assumptions, r x x  0 = T2(TIXo)  trivially follows. 
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Theorem C7. If  T1 a n d / ' 2  have a common fp Xo, then TI T2, T2 T1, T1 "1 T2, 
T2 -1 T1, Ti "1 T2 -1, T2 "1Ti -1 are also linear and have the fp Xo. 

Proof. T1T2xo = TlXo = Xo, and similarly for T~T 1 . Then note that  Ti  -1 and 
T~ 1 also have fp x o. 

Theorem C8. In an atomic (cf. Piron, 1969) CROC, if  all atoms are fp's of  
some T, then T is the trivial automorphism. 

Proof  In an atomic CROC, any iv @ ~ can be writ ten as a supremum of  
some collection of  atoms. By the assumption of  this theorem and because of  
Theorem C2, we then have Ty = y for all y E ~ .  
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